Products

  • 0
  • 0

Global Lithium Batteries market trend 2022-2027 What is the history of lithium batteries? by Newsmannyslaysall

Europe's largest economy, Germany, recently activated an emergency plan to manage gas supplies that the natural gas could be rationed if supplies are disrupted or disrupted by a stand-off over Russian demands to pay for fuel in rubles.  

German Vice-Chancellor, minister of economy and climate protection, said Germany's gas supplies were secure for now, but he urged consumers and businesses to reduce consumption, saying "every kilowatt of electricity counts." 

Germany's gas network regulator can ration gas if supplies run short. Plants would be the first to be affected. Special treatment will be provided to private families, hospitals, and other important institutions.  

Half of Germany's 41.5 million households use natural gas for heating, and industry consumption accounts for a third of the country's 100 billion cubic meters of gas demand in 2021.  

The price of many energy and commodities like the Lithium Batteries could be affected.


Early R&D of Lithium Batteries

Lithium batteries were first used in pacemakers. Lithium-ion batteries have the advantages of extremely low self-discharge rate and flat discharge voltage, so that the pacemaker implanted in the human body can operate for a long time without recharging. Lithium batteries generally have a nominal voltage higher than 3.0 volts and are more suitable for integrated circuit power supplies. Manganese dioxide batteries are widely used in calculators, digital cameras, and watches.

In order to develop varieties with better performance, various materials have been researched, resulting in unprecedented products.

In 1992, Sony successfully developed lithium-ion batteries. Its practical application greatly reduces the weight and volume of portable electronic devices such as mobile phones, notebooks, and calculators.

What is the development process of lithium batteries?

In 1970, M.S. Whittingham of Exxon used titanium sulfide as the positive electrode material and metal lithium as the negative electrode material to make the first lithium battery.

In 1980, J. Goodenough discovered that lithium cobalt oxide can be used as a cathode material for lithium-ion batteries.

In 1982, R.R. Agarwal and J.R. Selman of the Illinois Institute of Technology discovered that lithium ions have the property of intercalating graphite, a process that is fast and reversible. At the same time, the safety hazards of lithium batteries made of metal lithium have attracted much attention. Therefore, people have tried to use the characteristics of lithium ions embedded in graphite to make rechargeable batteries. The first usable lithium-ion graphite electrode was successfully trial-produced at Bell Laboratories.

In 1983, M. Thackeray, J. Goodenough and others found that manganese spinel is an excellent cathode material with low price, stability and excellent conductivity and lithium conductivity. Its decomposition temperature is high, and its oxidizing property is much lower than that of lithium cobalt oxide. Even if there is a short circuit or overcharge, it can avoid the danger of burning and explosion.

In 1989, A.Manthiram and J.Goodenough found that a positive electrode with a polymeric anion would produce a higher voltage.

In 1991, Sony Corporation released the first commercial lithium-ion battery. Subsequently, lithium-ion batteries revolutionized the face of consumer electronics.

1650339084563383.jpg

In 1996, Padhi and Goodenough found that phosphates with an olivine structure, such as lithium iron phosphate (LiFePO4), are more superior than traditional cathode materials, so they have become the current mainstream cathode materials.

With the widespread use of digital products such as mobile phones and notebook computers, lithium-ion batteries are widely used in such products with excellent performance, and are gradually developing into other product application fields.

In 1998, Tianjin Power Research Institute began commercial production of lithium-ion batteries.

On July 15, 2018, it was learned from Keda Coal Chemistry Research Institute that a special carbon anode material for high-capacity and high-density lithium batteries with pure carbon as the main component came out in the institute. The cruising range of the car can exceed 600 kilometers.

In October 2018, the research group of Professor Liang Jiajie and Chen Yongsheng of Nankai University and the research group of Lai Chao of Jiangsu Normal University successfully prepared a silver nanowire-graphene three-dimensional porous carrier with a multi-level structure, and supported metal lithium as a composite anode material. This carrier can inhibit the formation of lithium dendrites, thereby enabling ultra-high-speed charging of batteries, which is expected to significantly extend the "lifetime" of lithium batteries.

High quality lithium batteries supplier

Luoyang Moon & Star New Energy Technology Co., LTD, founded on October 17, 2008, is a high-tech enterprise committed to the research and development, production, processing, sales and technical services of lithium ion battery anode materials. After more than 10 years of development, the company has gradually developed into a diversified product structure with natural graphite, artificial graphite, composite graphite, intermediate phase and other negative materials (silicon carbon materials, etc.). The products are widely used in high-end lithium ion digital, power and energy storage batteries.If you are looking for Lithium battery anode material,click on the needed products and send us an inquiry:sales@graphite-corp.com

 


The negative electrode material is the carrier of lithium ions and electrons during the charging process of the battery and plays the role of energy storage and release. In the battery cost, the negative electrode material accounts for about 5%-15%, which is one of the important raw materials for lithium-ion batteries. The global sales of lithium battery anode materials are about 100,000 tons, mainly in China and Japan. According to the current growth trend of new energy vehicles, the demand for anode materials will also show a state of continuous growth. At present, the global lithium battery anode materials are still dominated by natural/artificial graphite, and new anode materials such as mesh carbon microspheres (MCMB), lithium titanate, silicon-based anodes, HC/SC, and metal lithium are also growing rapidly.
Our company provides anode materials and Lithium Batteries. If you need to know more anode materials and Lithium Batteries, please feel free to contact us.

Inquery us

Our Latest Products

Global early strength agent market trend 2024-2029 What Role Do Early Strength Agents Play? by Newsmannyslaysall

Under the premise of ensuring the quality of concrete, early strength agent can greatly shorten its final setting time, make it as early as possible, and then accelerate the turnover of template, save template dosage.…

Global powdered instant sodium silicate market trend 2024-2028 Powdered Instant Sodium Silicate CAS 1344-09-8 Sodium Silicate Powder by Newsmannyslaysall

John Albanese, leader of the Australian Labor Party, was sworn in as Australia's new prime minister. After his victory, Albanese said he would "make a big change" in the country's climate policy. "We now have an opportunity to end the 'climate wars'…

Global 3D Printing Metal Powder market trend 2024-2027 What is the 3D Printing Metal Powder by Newsmannyslaysall

The oxidation resistance and corrosion resistance of nickel alloy make it suitable for the harsh environment of high temperature and high pressure.…