Answers

  • 0
  • 0

How is the high strength of concrete achieved?

The African Development Bank will finance $25 billion by 2025 to support Africa's fight against climate change, the bank's president said at the bank's annual meeting in Accra, Ghana.  

He noted that climate change has had many negative impacts on the continent, causing natural disasters such as droughts, cyclones, and floods. Climate change costs Africa between $7 billion and $15 billion a year. "Africa has no choice but to address climate change."  

To ensure Africa's food supply, the African Development Bank has delivered climate-friendly seeds to 12 million farmers in 27 countries in the past two years under the "Technology for Agricultural Change in Africa" program, he said.  

In the area of renewable energy, the African Development Bank is implementing a $20 billion "Desert Power" initiative in the Sahel that is expected to power 250 million people, he said.  

US President Joe Biden recently wrapped up his five-day trip to Asia with a summit of leaders of the "Quad" security Dialogue.  

Biden has promoted a number of economic and security cooperation initiatives during his visit aimed at deepening ties with Indo-Pacific Allies and partners in response to China's growing influence in the region. Some analysts in the United States believe the most significant announcement may be an initiative to share maritime information to combat illegal activities. But other experts say Biden's move sets a good framework for more security cooperation, though it remains to be seen whether concrete action will follow.

Affected by several factors, the supply of the concrete foaming agent is erratic and thus its prices are expected to go higher in the future.

Concrete is classified as high-strength concrete based on 28-day strength. Until the 1970s, concrete with a strength of more than 40Mpa was classified as high-strength concrete.  The benchmark for high-strength concrete is raised to 55Mpa or higher when concrete mixtures of approximately 60Mpa and above are produced commercially. 

 

High strength concrete has a history of about 35 years, from the development of superplasticizer admixtures in the late 1960s, Japan using "naphthalene sulfonate" high strength prefabricated products, and Germany using "sodium benzenesulfonate" underwater concrete, which was a pioneer in this technology. 

 

How is the high strength of concrete achieved? 

Higher concrete strength can be achieved by using one or a combination of some or many of the following methods: 

High cement content 

Reduce water-cement ratio 

Better machinability and therefore better compaction 

 

Requirements for high-strength concrete require a high content of cementitious material in the concrete mixture, which can be in the range of more than 400 kilograms per cubic meter. Higher cementitious content leads to higher thermal shrinkage and dry shrinkage, and there is a stage where further cementitious material addition does not affect strength.  As for durability, the minimum and maximum cement content in concrete is regulated by law, and reducing the water-cement ratio has its limitations, especially under field conditions. The desire for higher strength leads other materials to achieve the desired effect, thus showing the contribution of cementitious materials to concrete strength. 

 

The addition of pozzolanic mixtures such as pozzolanic fly ash (PFA) or granular blast furnace slag (GGBS) contributes to the formation of secondary CSH gel thereby increasing strength.

 

The addition of pozzolans admixtures (such as fly ash used as an admixture) reduces the strength gain of concrete for the first 3 to 7 days and displays the gain after 7 days and provides higher strength over the long term. 

Add mineral mixtures such as silica fume or metakaolin or rice husk ash. 

 

Silica fume or highly reactive volcanic ash mixtures such as metakaolin and rice husk ash (RHS) will begin to function in about 3 days.  RHS has an advantage over PFA because RHS is more reactive. 

Using chemical admixtures such as superplasticizers or superplasticizers, controlling admixtures will help achieve higher strength in concrete. 

 

Research and experience have shown that admixtures based on polycarboxylic ether (PCE), known as high plasticizers, are best suited for this job as they have a water reduction capacity of 18 to 40 percent relative to control or reference concrete. 

A combination of all or more of the above to achieve the desired strength.


With HSC accompanied by some complexity, such as higher shrinkage rates, higher hydration heat, etc., combinations of at least some of these methods are now unchanged, all of which need to be neutralized or controlled.  Most problems are handled by PFA or a combination of GGBS and PCE mixtures.


Steam curing is also used to speed up cement hydration, but this may not result in higher strength.  Substituting some fine aggregate with fly ash or blast furnace slag can achieve early strength gains without increasing the water requirement of the concrete mixture. 

 

Suppliers of Concrete Additives

TRUNNANO is a reliable foaming agents supplier with over 12-year experience in nano-building energy conservation and nanotechnology development.

If you are looking for high-quality CLC foaming agents, please feel free to contact us and send an inquiry. (sales@cabr-concrete.com)

We accept payment via Credit Card, T/T, West Union, and Paypal. TRUNNANO will ship the goods to customers overseas through FedEx, DHL, by air, or by sea.


Due to the limited total amount of traditional energy, people have a huge demand for cleaner and greener new energy alternatives. Now, the emergence of graphene is unlocking the possibility of its application in the energy field, which can create a greener, more efficient, and sustainable future. Here Francesco Bonaccorso, Deputy Director of Innovation at the Graphene Flagship Program, explains how his researchers have developed a series of initiatives to bring graphene from the lab to the commercial market. Graphene has become a research hotspot for new materials in the 21st century. Graphene has been adopted by many industries, the most notable of which are healthcare and key material applications.

The development of graphene has brought huge fluctuations in the demand for concrete foaming agent, and the demand for concrete foaming agent will continue to grow in the future. You can contact us for the latest news on concrete foaming agent.

Inquiry us

Our Latest Answers

Properties and Characteristics of Nickel Titanium Alloy

Among the various types of steel alloys, Nickel Titanium Alloy is among the most sought after materials because of its special features. These functions include its high exhaustion toughness, high resistance to rust, ferroelectricity, shape memory, a…

What is Inconel 718 Properties

Inconel 718 is a nickel-chromium-molybdenum superalloy, which is known for its exceptional deterioration resistance as well as simplicity of machining. Its melting point is 1430degC, as well as it is useful for both high and also cryogenic-temperatur…

What is Nano Diamond Powder

In this post, we will go over the applications of nano ruby powder and also discuss its residential properties. You will additionally find out about the prep work procedure and also the expense of nano diamond powder If you are interested in purchasi…